Math 111 Contemporary Mathematics

Fall 2015

Lecturer: Dr. Paullin

Name:

Graph Theory Day 7

(1) Consider the graph:

Can you find a *circuit* that hits every edge without repeating any edges? What are the degrees of the vertices of this graph?

12 Yes

(2) Consider the graph:

Can you find a circuit that hits every edge without repeating any edges? No What are the degrees of the vertices of this graph? 2,3,3,4,4,6

(3) Consider the graphs:

Yes 2,2,2

No 1,2,2,3

No 2,2,3,3

Yes 2,2,4,4

In the graphs above, can you find a circuit that hits every edge without repeating any edges?

Find the degrees of the vertices of the graphs above!

Make a conjecture (or guess) about how to tell when you can get circuits to travel over every edge.

Pulur circuits occur when all vertex degrees are even.

(4) Consider the graph:

Can you find a path (not a round trip!) that hits every edge without repeating any edges?

What are the degrees of the vertices of this graph?

(5) Consider the graph:

Can you find a path (not a round trip!) that hits every edge without repeating any edges?

What are the degrees of the vertices of this graph? 2,3,3,4,4,6

(6) Consider the graphs:

In the graphs above, can you find a path that hits every edge without repeating any edges?

Find the degrees of the vertices of the graphs above!

Make a conjecture (or guess) about how to tell when you can get path to travel over every edge.

an Euler path occurs when there are 2 (and only 2) vertices with odd degree.